четверг, 21 ноября 2013 г.

радиационный баланс земли.

небольшая цитата из работы "Глобальные изменения климата: антропогенная и космогенная концепции". 
о влиянии CO2 на парниковый эффект. 

ах, да. и еще - графики температур из разных источников, для "мыфсеумремщиков" от теории глобального потепления:



ьтлт


Радиационный баланс Земли

Ежесекундно Солнце излучает в мировое пространство 3.83 • 1026 Дж энергии. Каждая планета получает определенную долю этой энергии. Для Земли эта доля составляет 2.1 • 1018 Дж. Поскольку средняя температура поверхности Солнца — около 5800 К, спектральное распределение энергии солнечной радиации неравномерно: 5% приходится на ультрафиолетовую область спектра, 52% — на видимую и 43% — на ближнюю инфракрасную область. Земная атмосфера отражает 36% всей падающей энергии и поглощает 17%. Вследствие селективности этих процессов спектральный состав изменяется, и только 47% солнечной радиации достигает поверхности Земли (рис. 1, график 1). Из общего уровня солнечной радиации на границе атмосферы 18% рассеивается, 12% коротковолновой области спектра отражается и 70% поглощается земной поверхностью. Значительная доля — 38.8% утилизируется, вследствие чего средняя температура поверхности планеты в настоящее время составляет 287.8 К. 7.7% расходуется на испарение воды и турбулизацию атмосферы, а 23.5% излучается в космическое пространство на длине волны 10.07 мкм со спектральным распределением абсолютно черного тела (рис. 1, график 4). В дневное время излучение земной поверхности состоит из отраженного и рассеянного коротковолнового света со спектральным максимумом, соответствующим длине волны К = 0.5 мкм, и собственного теплового инфракрасного излучения. После захода Солнца и ночью отраженное коротковолновое излучение экспериментально не наблюдается. Собственное тепловое инфракрасное излучение нашей планеты, 70.8% поверхности которой занимают океаны,экспериментально регистрируется после захода Солнца и достаточно точно совпадает по спектральному распределению с излучением абсолютно черного тела при температуре 287.8 К (рис. 1, график 3).
Следовательно, излучаемая земной поверхностью в дневные часы коротковолновая радиация и длинноволновая инфракрасная радиация как раз и являются тем излучением, которое должно поглощаться и отражаться атмосферой для создания парникового эффекта. Однако согласно представленной на рис. 1 (график 2) и рис. 2 (график 2) экспериментальной спектральной характеристике пропускания земной атмосферы, именно в области 0.5 мкм и 8-14 мкм имеются окна прозрачности, практически полностью исключающие поглощение и рассеяние излучения указанных длин волн. Прозрачность атмосферы в этих спектральных диапазонах столь высока, что экспериментально измеренный коэффициент пропускания атмосферы, и прежде всего углекислого газа, до границы стратосферы для излучения с длиной волны  = 0.5 мкм составляет 0.986, а для излучения с длиной волны 10.07 мкм — 0.978. Поскольку излучение указанных длин волн практически не рассеивается атмосферой, образование парникового эффекта вследствие увеличения концентрации углекислого газа маловероятно. Более того, это излучение не обнаруживается экспериментально. На рис. 2 (график 4) представлена экспериментальная спектральная характеристика энергетической яркости ясного ночного неба, максимумы которой соответствуют центрам полос поглощения водяного пара ( = 6.3 мкм), озона ( = 9.6 мкм) и углекислого газа ( = 15 мкм), а стрелками указаны характеристические полосы атмосферного поглощения для воды, озона и углекислого газа. Кроме того, экспериментальные исследования распространения в атмосфере лазерного излучения с длиной волны  = 10.6 мкм чрезвычайной мощности 1010
Глобальные изменения климата: антропогенная и космогенная концепции
Экспериментальные спектральные характеристики
Вт/м2 не обнаружили рассеивания луча лазера до высоты 30 км.
Между тем туман и облака, стабильно укрывающие более половины поверхности планеты, достаточно интенсивно рассеивают инфракрасное излучение и практически непрозрачны для земной радиации. Но если предполагаемое изменение концентрации углекислого газа в атмосфере, гипотетически провоцирующее образование парникового эффекта, может находиться в пределах от 0.032% до 0.035%, то концентрация водяного пара изменяется от 2 • 10-5% до 4% или в 200000 раз. При этом коэффициент пропускания атмосферы для коротковолнового излучения с эффективной длиной волны  = 0.5 мкм изменяется от 0.986 до 0.695, а для инфракрасного излучения земной поверхности с эффективной длиной волны  = 10.07 мкм — от 0.978 до 0.538. Как показывают экспериментальные исследования, небо, затянутое сплошными низкими облаками, действительно излучает как абсолютно черное тело с температурой, равной окружающей с точностью до нескольких градусов. Спектральная характеристика энергетической яркости темных кучевых облаков имеет максимумы в районах сильных полос поглощения 6.3 и 15 мкм (рис. 2, график 3), а в спектральном окне 8- 14 мкм регистрируется излучение абсолютно черного тела при температуре 275 К, что действительно подтверждает установленное климатическими наблюдениями влияние значительной концентрации паров воды на противоизлучение атмосферы, создающее парниковый эффект. Так, экваториальный климат со значительной облачностью и большим среднегодовым количеством осадков (3000- 6000 мм в год) характеризуется исключительно стабильным температурным режимом (25 ± 3°С в течение года), а в соседнем тропическом климате при среднегодовом количестве осадков 100-300 мм в год даже суточная амплитуда температуры воздуха превышает 40°С — инфракрасная радиация земной поверхности свободно излучается в космическое пространство сквозь спектральное окно прозрачности ясного неба, однако весьма эффективно удерживается атмосферными парами воды.
Итак, усиление парникового эффекта вследствие антропогенного увеличения концентрации углекислого газа не подтверждается теоретическим радиационным и тепловым балансом Земли. Более того, этот эффект не подтверждается экспериментальными исследованиями,что позволяет ставить вопрос о несостоятельности антропогенной концепции глобальных климатических изменений. По антропогенным выбросам CO2 в атмосферу нельзя прямо,без всяких коррекций, рассчитывать рост концентрации углекислого газа в воздухе, поскольку он хорошо растворяется в воде. В морях и океанах его содержится в 50-60 раз больше, чем в атмосфере. Любое увеличение содержания CO2 в воздухе будет, естественно, вызывать сток этого газа в гидросферу — океан поглощает CO2 в холодных широтах и освобождает на экваторе, поэтому парциальное давление углекислого газа в атмосфере на экваторе несколько выше. Гидросфера является мощным аккумулятором, существенно сдерживающим рост концентрации углекислого газа в воздухе. Согласно новейшим исследованиям, наиболее достоверным в районе Гавайских островов, где нет промышленных центров, за последние более чем сто лет содержание углекислого газа в атмосфере, по разным оценкам, увеличилось с 320-325 до 342-344 ppm (миллионных долей), то есть на 5.8%. За это же время средняя температура планеты увеличилась с 14°С до 14.8°С, то есть на 5.7%, вследствие чего интегральная эмиссия углекислого газа поверхностью океанов, прежде всего в экваториальных областях,также возросла в весьма коррелируемых масштабах (Гавайские острова расположены на самой теплой параллели — тропическом экваторе со среднегодовой температурой +27°С, что может быть вероятной версией увеличения концентрации углекислого газа).

Комментариев нет: